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Modeling of enhanced thermoelectric processes
based on asymmetrically-graded superlattices

' Gerald J. Iafrate

Department of 'Electrical and Computer Engineering,
North Carolina State University, Raleigh, NC 27695-7911

(Dated: January 12, 2005)

In this study, we explore the influence of spatially graded energy bands on the thermoelectric
properties of thin film semiconductors. In the analysis, we utilize the semi-classical Boltzmann
equation in the relaxation approximation, in a limit slightly displaced from equilibrium, to capture
the salient features of the relevant “band-engineered” electronic transport properties of carrier current
density and the carrier component of the heat flux density. Since emphasis is primarily focused on
the “carrier” transport in this study, the lattice contribution to the heat flux density is assumed to
be given by a constant lattice thermal conductivity times the external temperature gradient.

The thermoelectric variables of carrier current density and heat flux density are calculated in
terms of spatially varying, band engineered conduction and valence band edges, and a spatially
dependent electron-phonon relaxation time based on longitudinal acoustic dispersion; use is made
of the spherical band approximation and a spatially dependent effective mass for conduction and
valence band carriers to obtain explicit parametric results for the Seebeck coefficient and the figure
of merit for a model slab of material of finite length. The temperature variation across the sample
is assumed to have a linear spatial dependence during opened circuit conditions.

The Seebeck coefficient is determined and is shown to be enhanced by the addition of a term which
depends- analytically upon a spatial average of the relative “band engineered” energy band edge
divided by kT(zx), where T(z) is the spatially dependent temperature across the sample. Estimates
of the enhanced Seebeck coefficient are calculatéd for various band edge models including a linear
grade to offset the internal inhomogeneous temperature variation across the sample, and for a
periodic symmetric as well as periodic asymmetric variation in gradation.

The figure of merit, ZT', is also estimated in terms of band-engineered variables and discussed in
the light of a variational principle which allows for the optimization of ZT. Suggestions for more
detailed and rigorous analysis of thermoelectnc transport and optimization of ZT are discussed.

PACS numbers:

I. POSITION-DEPENDENT BAND CONSIDERATION!

We consider a sample with a nonunifofm band structure which is determined by the crystal potential, subject to an
additional internal or external fields of force such as an ‘electric field, stress, or temperature gradients Let £, (7, k) be
the band structure of the unperturbed crystal, where 8 is the band index. £g(7, E)= Epo (7, k) + AE&p(F) is the band

structure in the presence of additional fields of force, and Eg(7) = Ep(F, E.) is the band edge, where k., are the wave
vectores corresponding to the minima or maxima of the band. ‘11(7"') = —e®(7) is the potential energy for these forces.

Thus the total energy of an electron for band 3 is Eg(7, Ic) Ea(7, k) + ¥(7). We can introduce Ep(7) = £(7) + 9(7)
to be the energy contours of the total energy
For conduction band, we have,

E.(7, k) = £(7, F) + ¥(7)
E.(7) = E(7) + ¥(7)

and for valence band,
E,(7E) = & (7 k) + ¥(7)
Ey(7) = £,(7) + ¥(7)

II. WANNIER EQUIVALENT HAMILTONIANY?

For a single band, for example, the conduction band, the total Hamiltonian operator can be replaced by the
equivalent Hamxltoma.n operator,

H (7, —iV) = E(F, —iV) + ¥(7) | (1)
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where £,(7, k) is the band energy.
The classical equivalent Hamiltonian is mtroduced by the correspondence ~iV - Ic

HL(7,F) = £.(7, F) + U(7) = Ec(7, k) , (2)

- and which gives us the Hamiltonian equation, with momentum p' = hk, as

a7 o la oz
= = T (7 k) = 5 thEc(r,k) (3)
" dk 8H.. Y o .

Fn = ha—t- = __6—';‘:- = —VEC(’I', k) ] (4)

F., is the total force act on an electron in the conduction band.
The same is true for holes in valence band, by noticing that the force act on holes has opposite signs as on electrons,

- T aHv - _1_ “_ 5

(D = 5 = 5 VeE ) - (5)
L dk OH,| o o :

B n - - [— ot ] = VE.(7,F) ®

III. BOLTZMANN TRANSPORT EQUATION?®

Let fo(7, k,t) to be distribution functton of electrons in the conduction band. The Boltzman Transport Equation
(BTE) states, ‘ .

=

TR 4 5 Ry 9l 1) + 52 - FafalFiFrt) = CUA( R ) | G

ot

Clfa(F, K, t)] is the collision integral. Under relaxation time approximation, we let

_ fn(Fa Ei t) - fv?(F’ Ea t)
o (7, K) ®

C[fn(F’ Ev t)] =

where (7, k,t) is the local equilibrium distribution. Thus for the stationary situation, we have,

| CRZLE B Genrp = -LER KD ©)
Writing f,(7, k) = fO(7, k) + f1(, k), we find the perturbation solution for f}(, k) as
R = B e 95260 - PR gy 0
For holes in valence ba.nd, the Boltzman Transport Equation (BTE) has the form,
1”(—%@ +T,(7 F) - V(7 R ) + % [~Vefal® R 8)] = Cl(R E ) (11)

Writing f,(, k) = fO(7, k) + fA(7, k),

. - v w0 VEGFE) = 0.
L7 B) = = (7, ) [( B 91007 ) — Y2 TR) -v,;f,?(r,k)] (12)




IV. LOCAL EQUILIBRIUM DISTRIBUTION, ELECTRIC AND HEAT CURRENT

The local equilibrium distribution for electrons is given as the local Fermi-Dirac distribution,
-1

fg(f', IZ) _ [e Eg‘gr,FB)—<ngr)_ + 1] (13)

where (,,(7) is the Fermi level, or the electrochemical potential, for electrons.
The electric current and heat current induced by electrons can be found as, respectively,

To= i [ R RAGD g
ho= s [ #5500 [E6D -] 26D | 15)
or,
fo= i [ bR R [;(f, pIREh - vpenl 0 e
=g [ R (BB - 600] 567 )[an(r*,ﬁ>~<“7f2<~,ﬁ)—@='ﬁ‘-"’—"’-v;f3ﬁ/@] a7)
From Eq (13) we have,
— - 0 - v
VL) = g [VE (7 F) ~ Veal® ( 7B~ ) %] 18)
” - 0 " 6
9D = o Ve ) = (19)
o= 15 / d3kaf" 27, k)v,,(r R (7, k) - [64,;@ + (E‘C(F, k) - (,,(r*)) g] ‘ (20)

Ja=15 / &k af“n.(r B) (B, B) = (a(®)] 37 Rl F) - [vc,xm( (R F) - ) ] (21)

- Rewrite it as,

- = Cn v/ ‘ :
Jn-‘—‘O'n'V%—L},z'—T— (22)
Jng =13V *4" -L3. VTT (23)
with
C — = .
On=-77 272 25 1,,( KT (7, k)00 (7, k) (24)
e [ g By B [Eur ) -
Li? = 255 [ R R Rin(r B) (Bl B) ~ ()] (25)
-8 Lo
L2 =1 = / a7k S (B B (5 ) [ B) — () (26)
~0 n e Py g T L 2
L= / PR 7, Ryt (5 B) [ ) — 9] (27)
on is the electric conductivity for electrons in the conduction band. We can also find the thermal conductivity as,
Joo| = —ka¥T (28)
fn=0 '
ko = % [L32 — L2 .0, 71 L27] (20)

T




We can also define,

Vol =s,97T (30)
e f,.=0
L2
Sn = a,,“-T— (31)

For holes,

-1 -1

By (M R)—¢p(7) -
- = [e"_“*?"‘“ + 1] (32)

™ -, v (7, F) = ¢p (7)
PR =1- 07k =1 [ei—F"FTL + 1]

where (,(7) is the Fermi level, or the electrochemical poténtial, for holes.
The electric current and heat current induced by electrons can be found as, respectively,

G / &Kk, (7, R)FAF F). - » - (33)
To= s [ @FaED (B = 6] 116 F) (34)
- or,
. e IRGER)
5= =g [ EFnERaED [‘p(r‘, B9k - YR g0 By (35)
_ N S e N
fo==ps / &y (7, R) [Bu(7, B) - 7] 557 ) [«7 g k)-Vf,‘,’(F,k)—E%(—’—-)~V;f,?(ﬁk)] (36)
From Eq. (32)7we have,
_af0 [ - \ VT ~
VR = o [VE (7, F) = V6(7) = (Bl F) - (7)) —Vf] (37)
- - af0 _ " o
VeSO k) = aj;f; VB F) = 5%&6,,(1", k) | (38)
- _afo o . . o - v )
h= g [ Fg (s (e Do D) [vcpm + (BB - 67) —V——] 39)

T
0 . . =
To= g [ PRG2n(rB) [BulriB) - (0] 57 B R) - [vcp(m( S(FB) = G() VTT] (40)

Rewrite it as,

T, =0,V -'Cp —L. VTT (41)
Tia =1 -6%4:2% | | (2)
with
o= 13 / L T,,(r R)a, (7, K5, (7, F) 3)
12 =~ 5 [ @R R R (B F) = 60 (1)
~af° - - -
13 - ,‘, / ERDE o By R 5, [Balr ) - () ()
1 JOfY e w - 2
- / SR DRED [BED- 60 t)




op is the electric conductivity for holes in the valence band. We can also find the thermal conductivity as,

Joo| ~ =-mpVT ' (47)
j=0

Kp 1 [L22 Lgl copte Lrl,z] (48)

We can also define, |
v =8, 9T L (49)

€l5,=0 :
_ L12
' Sp = 0’p l—ag— (50)
For lattice heat flux density, we assume that

' Jio = —KL VT, ' . (51)

where K is the lattice thermal cdnductivity assumed to be known from other experimental considerations.

V. SPHERICAL BAND, LONGITUDINAL ACOUSTIC WAVE

Assume we have spherical parabohc, effective mass band structures centered at k = (O 0,0).
For electrons in conduction band,
: 21,2

& E (7 + 52
(7 ) = Eo(7) (P (52)
n(f") is the coordinate dependent effective mass. Thus we have,

Lo hE

’U,,(’I‘, k) = m* G (53)

We further' assume? the longitudinal acoustic dispersion relations for phonons, wq = vog, so that,

: MvIR®
where Tnox (F) = & gormiepr :1; o and Tno(F) = T-=2'im Tnok (7).
Component of the electric conductivity has the form,

2 .
af" Tn (7, k) (%) kakg (55)

All the components in the above integra.l, except for k, and ’Cﬁ, are spherically symmetric, thus oy, is a scalar instead
of a tensor and we have,

(an)aﬂ - _4,",3

(On)oas = 0, (a#P) _ (56)
: n + + n

on = (0n)11 = (0n)22 = (On)33 = (on)n1 ("';)22 (9n)33
_ 2 d3k6fn (T k)ﬁ'_z_l_ci 57
T T1end / E. ™ | | (57)

For the same reason, L12, L2* and L22 are all scalars, ,
-0 Hi2k?
L} = 1273 /dak fo T (F k) m*2 [Ee(7, k) — ¢a(P)] (58)
;] f K2k . : )
21 12 _ 3;9n . (w _

== / d (r,k)——m.z [Be(7,K) — (a(7) 59)

Lﬁ2=-ﬁl7;s / ,,( St —— B B k) — G (60)




Let .
& = Ec(f"vk) — €C("-') _ EC(F, k) _EC(F)
" kgT B kgT
_ . E(F) - ¢a(7)
77n(7:') - kBT
. then,

£ = iy

o JInion, egn"ln-}-l
Ofa _ 1 0fa
OF, kBT o€,

(61)

(62)

(63)

(64)

Let JdR3 = [ dkk? Jo dosind f d¢ and integrate over § and ¢, noticing that k = 1/ =5# 2t JkpT /&, and Eq. (54),

an=—i ! (27;.: ) Tno(ﬂ(kBT)/ d€nn af"‘

. . % 0
Liz=£_37(2';ln) Tuo(F) (ksT) / dEnn (En =) 5 af
3
21 12 _?_L 2m;, 2/ afn
b=t 3 m;}( h ) alr){kad) 0 @ntn (En =) g, 2
11 (om 0fn
7 (—h—) o kT [ dnte (€= 1) L

Consider integral, where g(€r) is an arbitrary function with g(0) =

/ dEng(£n) SL2 "f" = [£2(En)a(En)]

Then we have

On = g (2"‘3)%1,,0(?)(@1") /Owde;f;’(sm

* % o0
1= =g (B2) )k T [ e £ 8~ i)

3
1 /2m*\2 . b
1 =1 =~ gt (B2) oIk [ dEnsSEn ) 28—

22_ 1 1 (2m3 ; s [ 0 2 2
Ly = T \ R Tno{F)(kpT) dEn fn(En,T) [3811 —dnnén + "?n]
w2 m?, 0

Introduce Fermi-Dirac function F;(n), which is defined as F(n) = f0°° ;(géf—ﬁ%. Thus,

e

& 1 (2m '>’3‘T,,o<m(kBT)Fo<m)

In = 3p2 mi \ h
2 e 1 fams)\} 2
L =g — (=57 o) (ksD)” [2Fa() = mnFo(n)]
21 _ 12 e 1 (2my d 2
Ly =L;7= i e 7 Tno (F)(kBT)* [2F1(11n) ~ N0 Fo (1))

2= L1 ('zm,’:)§ T20(F)(k5T)° [3Fa(1n) = 41 Fa (1) + 7 Fo (7a)]

(65)

- (66)

(67)

(68)

(69)

(70)
(71)
(72)

(73)

(74)
(75)
(76)

(77)




and then,

kg 2F, (77n) - nnFO(TIn)

L
5a(7) = onT

? ’ FO(nn)
ou(®) ___ oaT —-ifl  F(m)
kn(F)  [2 - BB T \kp) T3F(m)F2(n.) — 4Ff(nn)

For holes in valence band,
h2k?
2my(®)

my (7) is absolute value of the coordinate dependent effective mass. Thus we have,

(7 k) = &,(F) -

e hk
(7, k) = RHG)
D

We again assume the longitudinal acoustic dispersion relations for phonons, wq = vog, so that,

(7 K) = 1o (7, k) = Tpok (7'“')’ 0()

B Jam-a@h

_ 9x¢ Mu2r® _ h ]
where Tnop(f') = Tﬂ—ot:!ﬁi—k—g—f’ and Tp()('l_‘) = —\/i-jn——:TPOk(‘l—"). o
For the same reason as for electrons in conduction band, oy, Lll,z, Lgl and ng are all scalars,

2 212
e /d3 fp (’r,k)ﬁk

% = 1973 OFE, Tp
_af0 2 k
12 __ 3 P
L = —ios [ @Rsg (R R oy pvm mﬂ
3 0f0 K k2
L1211 =_L1112= 127 3/d3 aEp plT Cp("_")]

p=lwff R P&m mﬂ

Let
£ = Ev("-") - EU(F, k) _ EU(F) — E"(F’ k)
»T kT - -kgT
- Ev ("1) — Cp(i")
Tlp(T-') = T
then we have,
0 1
fol&p™) = mrmr
af 1 912

O0E,  kpT 6E,

(78)

(79)

(80)

(81)

(82)

(83)
(84)
(85)

(86)

(87)

(88)

(89)

(90)




Let [dik3 = [ dkk? [ d8 sin&fo27r d¢ and integrate over 8 and ¢, noticing that k = y/ E%n,i\/kBT,/Ep and Eq. (82),

.- 32 1 2m 3 fO
Op=—5 35> <T) Tp0 7-") kBT)/ dg Pag

2 *
3 my

3
e 1 2m 2 f
L}F:Wm—;( n) 7o0(A) (kB T) / GE,E,(p ~ Ep) g
3
21 e 1 2m fo
R <_ﬁ£) TpokaT)/ 481y = &)

1 1 (2mg i Oy
1= g (52) s [ iyt — £ 5

2 o *
37 my

Consider integral, where g(&,) is an arbitrary function with g(0) = 0,

/ dgpag(gp) / dgpag(é' ») 0

e a
[) dé'pg(ﬁp) 3 [fp

Thus,

e 1 [/2m 3 o :
Op =35 ( h?) Tpo(F)(kaT)/ A, (€ )
P
12 e 1 (2my 3
Lp =_Wﬁ 7 Tpo(7)( kBT dgp(’?ﬂ 2gp)fp(gp’7-')
p
o _peo e 1 (2m) keT)? | % dE,(n — 2£,)2(E
Ly =l =33 T 7p0(7) (kT) o (o — 265) fo(Eps )
1 1 (2my t
L§2=—3—W§m; (_h—) Tpo(”_")(kBT) /0 dé, [3€7 — dnp€, + 5] fp(Eps7)
Thus, ‘
. € 1 2m? 3
%P = I 5 Tp0(F)(kBT') Fo(mp)
P
3 .
1 /2mi\?
1 = g5 (B2) o):0T Y 2P ) oo
P 1 2 ) %
21 _ _yl2_ __ & My ™2 _
12 = -1t = —g5 s (F5E) kT RFi(y) ~ o)
3
1 1 (2m;)\?
12 =it (B2) wokeT)* [3Fatrp) = i, Fi) + 72 Fo()
P .
and then,
5.7 = L _ ks 2Fi(mp) — o Fo(mp)
P o, T e Fo(np) .
a5(7) - o T e (_e_)2 l Fo2("7p)
Kp(7) L22 - Ly kp) T 3Fo(np)Fa(np) — 4FF (1)
Op

(91)
(92)
(93)

(04)
(95)

(96)
(97)
(98)

(99)

(100)
(101)
(102)

(103)

(104)

(105)




VI. NONDEGENERATE BOLTZMANN APPROXIMATION

In the nondegenerate approximation, E, (r k)—=(n(F) > Ee(F)—Ca(7) > kBT, and G (F)—Ey(7, k) > G(F)— Eu(7) >

kpT,the Fermi-Dirac distribution function goes to classical Boltzman distribution,
- Ec (7. E)—¢n (7
Sa(F k) — €7 ke
Eu (7, k) ¢p(7)
Rk - e

and
7])—»/ gie~E-ndg
0
That is,
Fo'(ﬂ)—-»/ e E-MdE = e
0
Fit) = [ ge®mde = e
0
Fz(ﬂ)—»/ £2e=E-1dE = 2¢7
0
Thus, .
e2 1 2"71:,'% n
=33~ \"h Tno(F)(kBT)e
3
e 1 [2m:\?
1 = g (52) mo@aTem 2=
3
e 1 [2mi\?
2 =1 = g (B2) s T 2 )
3
1 1 /2m3\?
1= gL (28) @ kaT e 6 4 + )
L1 e\ (P (ksT)e™
P 3q2 my \ k #0 Be
3
2_ e 1 (2mp)? kpT)%e"™ [2 —
1 = gz (G52) e EsTI e 2=
3
o1 _ _pz__ € 1 (2m)? Zen
=18 =35 () (ST e (2~ ]
L22=___1__1._ % %To(f‘)(kBT)seqp [6"47) +772]
2 T my \k po (7 o Ty
and then,
L,112 2kp n 2kp E, (7—”) ¢ (7)
Sn(F) = o T e (1 B _2—) T e 1+ 2kpT(7)-
on(d) _ ol _1(e)\’1
k() [2-LEE T 2\kp/) T
S(F)—“—z"@‘ 2+Cp(7_")"Ev(77)
P\ T T T e kT
@ ___ ol _ 1(e\*1
o o EE T 2\k) T

)

(106)

(107)

(108)

(109)
(110)
(111)

(112)

(113)
(114)
(115)

(116)

117)

(118)

(119)

(120)
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VII. TWO BAND - CONDUCTION BAND AND VALENCE BAND - MODEL

Letting (n = ¢ = ¢, it follows in a straightforward fashion that the two-band dynamical variables become

I

J=Jot By = (on +0) % - {10V + LfP} 9T
= o ¥ ;(12)27,7:, | (21)

where o0 = o, + 05, and L4 = ng) + ng). From this, we obtain

(a2 LY L0 n Snt0p Sy : .
S= LGT = (ontop) T =2 an+:: N : (122)
Jp = J, +JpQ {L(2l) n L(21)} T {LS.”) + L,(,”)} % - L(m)ieg - L(22)_VT_T, (123)

where L) = L@ + [V and L@ = 1P + L . Also, we acquire

. - % (L(22) 3 L(u)oL(.m)) _ %(ng) +L1(722) _ {L&21)+L£’21)}{lel#)+L;12)))

Tntop
e )
= kn+ky+ {Ts L 4 T8, L8V — TS(L(m + L‘”’)} o (124)
Or ‘
= kn + kp + (Sn — 8) LEY + (S, — S) LEY . - (125)

VIII. SEEBECK COEFFICIENT; FIGURE OF MERIT*

~ For a given carrier band, the current is given by J, in eq. (22) and J in £q. (41), respectively. Then, since the
Seebeck coefficient is determined from the open circuit condition that J, or J =0, it follows that

V(r:f"l _ L(::) vr _ =0, . (126)

where m represents n or p from egs. (22), (41), respectively. Here, {m (F) is the electro-chemical potential, given by
(m(7) = Ep, + q6(7), ' (127)

where ¢(7) is the external potential across the sample and q is the charge of the carrier. Therefore, after integrating
across the sample of length L, one obtains )

v

#(L) — ¢(0) = {EF,(0) — EF,(L)} + foL SmV Td, | (128)

~ where S, = LY /(om T) is defined in egs. (31),(50) for m = n, p, respectively. For a slab in which EF,, (0) = EF, (L),
we see that eq. (128) simplifies so that in one dimensional case, we get

A¢ = (L) — $(0) = [y Sm L dx. (129)

Therefore, from eq. (129) we can see that the voltage developed across the slab depends upon the quantities Sy, (z) =

L8P (z)/(om(z) T(z)) and a L%? and o,, have already been calculated for conduction and valence band cases,
and for degenerate and non-degenerate Boltzmann approximations. As for T'(z), given that the temperature at the
ends of the slab are fixed at hot and cold values to provide a temperature gradient across the sample, the value of
the temperature within the sample will vary with position since T'(z) will classically depend upon the solution of a
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boundary value problem for thermal diffusion. The classical solution has been well documented, and in fact, in the
open circuit condition, it is well known that T'(z) varies linearly across the slab as

T(z) = T(0) + &Lz, : (130)

where T(0) is the cold temperature and T(L) is the hot temperature, and AT = T'(L) — T(0), Using T(z) of eq. (130)
in eq. (129) therefore gives the simple result that _

2 =8=1[ Smdz. , (131)
That is, the Seebeck coefficient is the spatial average of Sy;(z) over the slab.

We have evaluated S, = L(u)(x) /(om(z) T(z)) for the spherical band model with spatially varying band edge and
longitudinal acoustic wave phonon approximation in Section V. Sy, has been evaluated as a function of position for
both degenerate Fermi-Dirac [eqs. (78), (104) for n,p, respectively] and non-degenerate Boltzmann thermodynamic
limits (egs. (117), (119) for n, p, respectively). For simplicity of discussion, we present the result for the non-degenerate
case for electrons so that eq. (131) becomes : '

§ =172 (1+ 520 & (132)

or
5= -k (2o (B @) (133)

Thus, the Seebeck coefficient is enhanced by the addition of the spatial average of spatially dependent Boltzmann
energy ratio (E. — (,)/{kg T) directly in the Boltzmann limit. If we were to evaluate S, for electrons in the Fermi-
Dirac limit, we would have to use S, in eq. (78) which would then require an integral over Fermi-Dirac integral
functionals of (E, — ¢,)/(kgT) in a much more non-linear dependence on the spatially varying Boltzmann energy
ratio.

For simplicity in discussing the estimate of the enhancement factor, we assume that (n(:z:) ¢n(0) a constant. We
note that if the Boltzmann factor were a simple constant in total, the enhancement would simply result in an increase
in the Seebeck coefficient from the free electron value to the semiconductor value. In fact, in enhancing the Seebeck
coefficient, we simply want to maximize the area under the curve of the Boltzmann energy ratio in eq. (133). However,
this dependence upon the Seebeck coefficient needs to be balanced with the other transport pa.ra.meters that enter
into the well-known figure merit, Z,,(z) which is given, for a given carrier type, as

m 52
Zn(a) = P2 = T L (134)
__m_m,?\___m_ L

Here, there dependence of S am,L(22) L(12) and L(m) upon the spatially dependent Boltzmann factor has been
calculated for degenerate and non-degenerate statistics in Section V, VI, respectively; also kz, is the lattice thermal
conductivity. For the case of non-degenerate statistical analysis, we see from egs. (109)-(112) for electrons that

L(22) L(m L(Zl) can be expressed in terms of o, so that Z, in eq. (134) can be greatly simplified as

Son@ =) _ s2 '
Zn(2)T(z) =.2(k3/e)=”,,,fz)Tf,)+kL = el @TE) (135)

where, from eq. (109), o, is given by

e \3/2 '
on = gark (352)7 Tao(@) (kp T(e)) e”Femtod (o T, | (136)

The dependence of all the thermodynamic variables on the spatially dependent Boltzmann factor, even though in-
troduced explicitly here through the approximate form of the relaxation approximation, is resonant with Landauer’s
original concept of “motion out of noisy states” 3 where non-uniform temperature effects drive the system dynamics
- in this analysis, it is a non-uniform Boltzmann factor which drives the system, where the energy band edge is
tailored and fixed, and the non-uniform temperature, apart from the fixed hot and cold ends, is transferring energy
dynamically. Therefore, even though (E. — (o)/(ks T'(x)) can be chosen to enhance S,(zx) over the slab of material,
the spatial dependence of the figure of merit will depend upon the term kz /(o T(z)) in eq. (135) in a very sensitive
way; in fact, the model dependence of o, in eq. (136) shows that the conductivity will depend exponentially on the
spatial Boltzmann factor.
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" As a few illustrative examples of E.(z) to estimate S in eq. (132), we cons1der the followmg simple cases, always
assuming that T'(z) = T(0) + &L z, with AT = T(L) — T(0), and (= ¢(0) =
Case 1: E,(z) = E.(0), a constant band edge. :

L (E.(z)- . { E.(0)- T(L '
L= 10 (BSER) do = (597 ) i | (137)
Case 2: E.(z) = E;(0) + % z, a linear spatial band edge.
E(z)— — [ E(0)— T(L T ™)\
L=1f ( %560)‘1”’.:( &T‘“)lnm +T‘Z§T(1“Z(qg"lln?§6)2)' (138)
Case 3: E.(z) = E.(0) + En—o &(z — na), aperiodic but asymmetrical spatial saw tooth band edge; here, £(zx —na)

defines a unit cell (see sketch) of the periodic band edge, where

E(z — na). =

' Zrn{f_(n—l)}' for (n—-l‘)as:rs(n-—l)a-kra
{ : (139)

'1—‘:0;(—%'{"") for (n—l)a+ra§:cgna

&(z)

n-1a z— ra na

In £(z — na), the parameter r, where 0 < r < 1, measures the degree of asymmetry; of course, for r = 1/2, one
achieves total symmetry; when r = 1, one achieves a perfect saw tooth. For this case,

I = § fy (B55) do = (5%7%) 3 + AR, (140)

N-1
L _ : !
AL(r) = 1 fy ) E—na)de = gfr |v3 D Iz +7 ) L n s + (v + Dk Z In 0 +
n=
N-1
LY 1.In lﬁﬂ] . : (141)
Here, y = LT(0)/(aAT). In particular, when r = 1/2, we see that eq. (141) reduces to

AIa(% = kzv [Z(y+l lny—h+ Z(y+l+1 +l+ ] , (142)

whereas for r = 1 (the perfect sawtooth case), we see that eq.(141) becomes

1=0

N-—1
Al (1) = % [Z (y+1) In #ﬂ—l} : (143)
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Comparative inspection of eqs. (142), (143) indicates that AI3(1) < AI3(1/2) so that for all other equal parameters,
the symmetric periodic band edge produces a larger area under the curve of eq. (140) than the asymmetric band edge;
thus the enhancement to the spatially averaged open-circuit Seebeck coefficient would be larger for the symmetrical
(r = 1/2) band edge case. However, it should be noted that even though a given choice of spatial energy band

- configuration may give rise to a relatively large Seebeck coefficient, the more significant consideration is to choose an
energy band conﬁguratlon which optimizes the figure of merit ZT". In this case, the physics is not determined by open
circuit conditions, as is done in evaluating the Seebeck coefficient, but is determined generally under non-equilibrium,
current driven conditions. Thus, an effort should be pursued to examine the role of band engineering on the relevant
thermoelectric transport properties, and to properly address the' ability to enhance and optimize the thermoelectric
figure of merit based on a basic variational prmmple for ZT.

IX. VARIATIONAL PRINCIPLE FOR ZT, THE FIGURE OF MERIT

As noted in egs. (134), (135), the well-known figure of merit for a given carrier type is generally given by

T - B o

In a very nice variational analysis developed by Nishio and Hirano,® they treated S, and K,, as functionals of
differential conductivity, op(e), where op(e) is known and is defined as the integrand of total conductivity

= [op(e)de. _ o (145)
The transport variables S, and K, can be expressed in terms of op(e) as ‘
Sm = g5 [ de(e = Qonle) (146)
and ) . A
 Km = 2 [ de(e — (2ople) ~ Ton 82, | (147)

where ¢ is the chemical'potential, and K the lattice thermal conductivity, is considered constant. Thus, Z,, T in
eq. (144) can be viewed as a functional of op alone, provided K is a constant. Thus, a small change in op(e)
functionally gives rise to a change in Z through the functional derivative expression

§Zm = Zlom + b0m) — Zlom) = [ dezilpsbep(e). ' (148)

Nishio and Hirano® have shown that this functional derivative in eq. (148) yields a maximum for eq. (144) in an
energy range given by .

s e () (o) o

This suggests that it is possible to improve the figure of merit of thermoelectrics by tailoring the transport energetics
by band engineering the carriers so that they transport across the thermoelectric device in an energetically favorable
range.

The variational principle developed by Nishio and Hirano is very illuminating, but it only applies to situations
where the lattice thermal conductivity is constant. A more useful form of the variational principle would allow the
lattice thermal conductivity to vary as a subsidiary condition through a functional dependence on the conductivity.
It is interesting to note that the expression for Z,, T in eq. (135) can be written in terms of a calculated function of
transport variables Lg2), ng), Lgl), which can all be expressed in terms of the conductivity ¢y,. Therefore, Z,, T’
would be a function of (E, — (o)/kT(x), the spatially dependent relaxation time 7,,(x), and the spatially dependent
effective mass m}(z). In plotting Z,, T as a function of (E; — ¢)/kT, one would find that Z,, T peaks for a given
K7 thus indicating that Z,,, T is amenable to optimization with respect to the Boltzmann ratio parameter in o(z).
This optimization scheme is given physical meaning based on the variational principle discussed herein.

X. DISCUSSION FOR FOLLOW-ON AND CONCLUSION

In this study, we have explored the influence of spatially graded energy bands on the thermoelectric properties of
thin film semiconductors. For an assumed linear spatial temperature variation across the sample during open circuit
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conditions, the Seebeck coefficient was determined and was shown to be enhanced by the addition of a term which
depended analytically upon the Boltzmann factor comprised of the “band-engineered” energy band edge divided by -
the spatially dependent temperature across the sample. Estimates of the enhanced Seebeck coefficient for a symmetric

versus asymmetric periodic band edge indicate that the symmetric band edge gave rise to a larger Seebeck correction;

however we noted that the more significant consideration for ultimate thermoelectric optimization is the figure of

merit, which is determined under current-driven conditions - here we feel that the asymmetric, periodic band edge

will have a dommant role in driving the non-equilibrium carrier dynarmcs due to its non-linear influence upon the

conductivity.® -

Overall, the study revealed the potential for optimizing the thermoelectric figure of merit through band-gap en-
gineering. A more detailed and rigorous analysis of thermoelectric transport under graded band-gap conditions are
required, and a more comprehensive approach to the variational optimization of Z T, including the integration of
thermal lattice dynamics is necessary to explore the physical frame work for uncovering the potential of enhanced
thermoelectricity in thin film semiconductors. This more detalled and rigorous-analysis moves along the following
road map. :

o formulate the transport equations with a careful analysis of the spatial dependence of the energy bands; this means
developing a Wannier-equivalent theorem for spatially varying band edges from the ngner—Boltzmann picture, and
deriving the correct equation of motion for the Boltzmann drift term

e develop the full Boltzmann formulation for carriers in bands subject to electron-phonon interactions, and electron-
mediated phonon dynamics. One needs the electron Boltzmann equation with electron-phonon scattering; in addition,
one needs the phonon Boltzmann equation with electron-phonon scattering. Both equations are solved sxmultane—
ously with inhomogeneous energy band edges and doping, and then calculates the Seebeck coefficient and Z T using

appropriate boundary conditions..

¢ explore the variational principle for ZT optlmlzatlon including both fixed and varying lattice thermal conductivity
as a subsidiary condition.

o overall objective - fully explore the role of band-gap engmeermg in enhancing the thermoelectric propertxes of
semiconductors
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